
Cell Host & Microbe

Perspective
Antibiotics, Pediatric Dysbiosis, and Disease
Pajau Vangay,1 Tonya Ward,2 Jeffrey S. Gerber,3 and Dan Knights2,4,*
1Biomedical Informatics and Computational Biology, University of Minnesota, Minneapolis, MN 55455, USA
2Biotechnology Institute, University of Minnesota, Saint Paul, MN 55108, USA
3Division of Infectious Diseases, Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
4Department of Computer Science and Engineering, University of Minnesota, Minneapolis, MN 55455, USA
*Correspondence: dknights@umn.edu
http://dx.doi.org/10.1016/j.chom.2015.04.006

Antibiotics are by far the most common medications prescribed for children. Recent epidemiological data
suggests an association between early antibiotic use and disease phenotypes in adulthood. Antibiotic use
during infancy induces imbalances in gut microbiota, called dysbiosis. The gut microbiome’s responses
to antibiotics and its potential link to disease development are especially complex to study in the changing
infant gut. Here, we synthesize current knowledge linking antibiotics, dysbiosis, and disease and propose
a framework for studying antibiotic-related dysbiosis in children. We recommend future studies into the
microbiome-mediated effects of antibiotics focused on four types of dysbiosis: loss of keystone taxa, loss
of diversity, shifts in metabolic capacity, and blooms of pathogens. Establishment of a large and diverse
baseline cohort to define healthy infant microbiome development is essential to advancing diagnosis, inter-
pretation, and eventual treatment of pediatric dysbiosis. This approachwill also help provide evidence-based
recommendations for antibiotic usage in infancy.
Introduction
Antibiotics are by far the most common prescription drugs given

to children (Chai et al., 2012). Epidemiological studies have iden-

tified associations between antibiotic usage in early infancy and

occurrence of diseases such as obesity, diabetes, and asthma in

later life. Longitudinal studies of antibiotic usage have demon-

strated profound short- and long-term effects of antibiotics on

the diversity and composition of the gut microbiota. Finally, a

large and growing number of studies implicate a causal role for

microbiome imbalance (dysbiosis) in numerous diseases (Bie-

dermann and Rogler, 2015). Understanding the short- and

long-term effects of early life antibiotic use on the diversity and

composition of the gut microbiota is critical in identifying the

risks associated with the emerging prescription trends. How-

ever, the existing literature is limited in directly implicating micro-

bial dysbiosis as the link between childhood antibiotics and

development of disease in later life.

In this review, we synthesize numerous complementary sour-

ces, including microecological studies linking antibiotics and

dysbiosis, mechanistic studies linking specific types of dysbiosis

to specific disease outcomes, and reviews of epidemiological

studies supporting antibiotics and increased disease risk. By

this approach, we have identified four major types of antibi-

otics-related dysbiosis, and we have presented a framework

for discussing and measuring pediatric dysbiosis in the context

of several major diseases. Our analyses indicate substantial ex-

isting evidence for a number of causal mechanisms by which the

microbiome mediates antibiotic-related disease risk.

Overuse of Antibiotics
The vast majority of antibiotic use occurs in the outpatient

setting, where up to a third of prescriptions are unnecessary. In

2010, children received 74.5 million outpatient antibiotic pre-

scriptions—one for every child in the US—accounting for one

fourth of all medications for children (Hicks et al., 2013).
Numerous studies have demonstrated that antibiotics are often

prescribed unnecessarily (Gonzales et al., 2001; McCaig et al.,

2003; Nash et al., 2002), with estimates as high as 50% (Kronman

et al., 2014). Nearly 30% of children receive an antibiotic pre-

scription during an outpatient primary care visit (McCaig et al.,

2003), most often inappropriately, for viral upper respiratory tract

infections (Gonzales et al., 2001; Nash et al., 2002; Nyquist et al.,

1998). Overuse of broad-spectrum antibiotics for conditions

responsive to narrow-spectrum agents has been dramatically

increasing (Hersh et al., 2013). Even after adjusting for differ-

ences in patient age, comorbidities, and sociodemographic fac-

tors, childrenwith the same infections can receive vastly different

rates of antibiotic prescriptions depending upon the practice or

clinician visited (Fierro et al., 2014; Gerber et al., 2014). This phe-

nomenon also seems to be universal: per capita antibiotic pre-

scribing rates vary widely across US states (Hicks et al., 2013)

and European countries (Goossens et al., 2005) without reason-

able cause for geographic differences in bacterial infection rates.

In addition to the gut-microbiome-mediated effects as dis-

cussed in detail below, inappropriate prescribing of antibiotics

can lead to both drug-related adverse effects and the promotion

of antibiotic resistance. More than 140,000 emergency depart-

ment (ED) visits occur annually in the US for antimicrobial-related

adverse effects, comprising almost 20% of all ED visits for drug-

related adverse effects (Shehab et al., 2008). In addition to this

direct patient harm, antibiotic use has been associated with

the emergence of antimicrobial resistance, identified by the

World Health Organization (WHO) as ‘‘one of the three greatest

threats to human health.’’ Importantly, a recent study found

that the prevalence of antibiotic resistance genes in the infant

gut microbiome increases with age, and infants born via C-sec-

tion harbored a larger proportion of antibiotic resistance genes

(Bäckhed et al., 2015). Infections with resistant bacteria increase

morbidity and mortality, and greatly increase the cost of medical

care; the Institute of Medicine estimated that, in 2010, roughly
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$20 billion was spent on the treatment of antibiotic-resistant

infections. Knowledge of these facts, however, has done little

to curb antimicrobial use. Improving our awareness of the

long-term implications of both necessary and unnecessary anti-

biotic exposure is important to better inform the risk/benefit ratio

for antibiotic prescribing and to improve child health.

Normal Host-Microbiome Development
Gastrointestinal Development

Gastrointestinal (GI) development occurs throughout embryonic

life, and its basic structure is first formed by the end of the first

gestational trimester (Montgomery et al., 1999). Tight junctions

are present by 10 weeks of gestation, and intestinal villi are

formed by weeks 12–19 (Maheshwari and Zemlin, 2009; Mont-

gomery et al., 1999). Postnatally, an abrupt shift in exposure

from amniotic fluid to first foods occurs in the GI tract. This in-

duces many changes along the GI tract, including a change in

pH of the stomach. For example, some reports state the pH of

the stomach is initially in the range of 6 to 8 (Avery et al., 1966),

likely due to buffering by the amniotic fluid, which decreases to

that of an adult (pH 1.5–2.5) within the first hours following birth

(Lebenthal and Lebenthal, 1999; Ménard, 2004). However, due

to the consumption of milk, and its buffering capabilities, the

pH of the infant stomach often returns to a high level of 7–7.6

(Hibberd et al., 1982). The higher pH of the stomach early in life

has a meaningful impact, including a higher absorption rate of

nutrients and a diminished digestive capacity compared to later

in life, which may support transit of ingested bacteria to colonize

the lower GI tract. Throughout postnatal development, the infant

GI tract also increases in size in both longitude and in diameter

and loses most of its early-stage porosity within days post-birth

due to milk-borne growth factors and hormones that stimulate

growth and development (Cummins and Thompson, 2002).

Development of the GI-associated lymphoid tissue (GALT),

including mesenteric lymph nodes, Peyer’s patches, and lym-

phocytes in the lamina propria is complete in full-term infants

at birth (Forchielli and Walker, 2005). For example, goblet cells,

responsible for mucin production, are functional by 12 weeks

of gestation (Montgomery et al., 1999), as are paneth cells, which

can secrete defensins and lysozymes by gestational weeks 13

and 20, respectively (Louis and Lin, 2009; Maheshwari and

Zemlin, 2009; Rumbo and Schiffrin, 2005). Although full-term

infants are born with fully developed digestive tracts, exogenous

stimulation through exposure to dietary antigens, hormones,

growth factors, and bacteria is required to elicit proper function

throughout life (Forchielli and Walker, 2005).

Microbiome Development

Although theGI tract of a healthy infant is generally considered to

be sterile before birth, recent work suggests that initial coloniza-

tion may take place in-utero (Aagaard et al., 2014; Funkhouser

and Bordenstein, 2013; Matamoros et al., 2013). Hours after

birth, microorganisms from the mother’s vaginal, fecal, and/or

skin microbiome and the environment are important colonizers

of the infant gut (Penders et al., 2006), with actual contributions

depending on mode of delivery. Several other factors including

prematurity, infant diet (breast milk or formula), hygiene, and

use of antibiotics will ultimately impact the composition of the

infant gut microbiome. Despite a seemingly chaotic colonization

with large swings in composition over time, gut microbiome
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development is governed by Darwinian dynamics: microbes

best adapted for the changing conditions of the gut will be

most likely to survive. We can see this clearly throughout the first

few weeks of life, as the colonization of facultative aerobes re-

duces the availability of oxygen, which then permit the growth

of strict anaerobes (Bezirtzoglou, 1997). As illustrated in Figure 1,

we can also see compositional changes in response to diet and

host development throughout the first year of life. In the United

States, the infant gut is initially colonized with Proteobacteria

and Firmicutes, followed by a gradual increase in Actinobacteria

(potentially due to the introduction of breast milk) (Sela et al.,

2008). By 6 months of age, Bacteroidetes dominate while Pro-

teobacteria and Actinobacteria gradually decline, which may

be attributed to the abundance of carbohydrates in solid foods

that coincides with weaning (Koenig et al., 2011; Vaishampayan

et al., 2010). By the end of the first year of life, the infant gut is

dominated by bacteria from the phyla Bacteroides and Firmi-

cutes (Figure 1). The healthy infant gut continues with dramatic

compositional changes throughout the first 2 years of life before

becoming indistinguishable from an adult gut microbiome at

age three (Yatsunenko et al., 2012).

Important Host-Microbiome Interactions

Maturation of the intestinal immune system is contingent on

parallel development of the gut microbiome (Figure 1); germ-

free animals have been found with significant immunological

defects in the GALT (Macpherson and Harris, 2004) as well as

improper development of Peyer’s patches and mesenteric

lymph nodes (Round and Mazmanian, 2009). Peyer’s patches

and the mesenteric lymph nodes develop prenatally, and iso-

lated lymphoid follicles develop postnatally, but all of these

tissues require interaction with key members of the gut micro-

biome in order to ensure proper differentiation and specification

and complete development of adaptive immunity (Cherrier and

Eberl, 2012; Maynard et al., 2012). The immune system must

maintain an anti-inflammatory state (Tsuji and Kosaka, 2008) in

the gut, especially during exposure to the considerable number

of innocuous antigens from commensals, hormones, and food.

The interactions of diverse cell types are necessary to carry

out the complex functions of the immune system (Adkins et al.,

2004); we highlight several immune cell types with important

dependencies on the gut microbiome. Dendritic cells (DCs),

one of the most important types of antigen-presenting cells,

sample the lumen and are responsible for orchestrating inflam-

matory or tolerogenic responses. To help the immune system

carry out appropriate responses, DCs can suppress or induce

the activation of antigen-specific T cells and have the unique

ability to differentiate naive T cells into effector or regulatory

T cells to target specific antigens (Lanzavecchia and Sallusto,

2001; Macatonia et al., 1995). T helper cells are critical in pro-

cessing presented antigens into specific cytokines that provide

direction for other immune cells and to eventually generate an

immunological response. Members of the gut microbiome

have been found to differentiate Th17 cells, a class of T helper

cells, which secrete IL-17 to produce defensins (Kao et al.,

2004) and recruit neutrophils (Aujla et al., 2007) to fight infections

at mucosal surfaces (Atarashi et al., 2008; Ivanov et al., 2009).

Pro-inflammatory Th17 cells must maintain balance with anti-

inflammatory regulatory T cells, particularly for the prevention

of autoimmune disorders. Certain Clostridia strains have been



Figure 1. Framework for Host-Microbiome Development in Health, Dysbiosis, and Disease
Disease classes are associated with cascading dysbiosis types, with important dependencies on the course of host-microbiome development. Note that disease
classes and dysbiosis types are not necessarily mutually exclusive. The proposed mechanisms presented are supported by extensive evidence in the literature,
both frommechanistic studies and from epidemiological surveys. Due to the very large number of references, the citations represented in this figure can be found
in Table 1.
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found to help with expansion and differentiation of regulatory

T cells (Atarashi et al., 2013) and have a direct role in reducing in-

testinal epithelial permeability by stimulating innate lymphoid cell

and T cell production of cytokine IL-22 (Stefka et al., 2014).

Innate lymphoid cells help induce pro-inflammatory responses

and serve as the main source of IL-22 (Sawa et al., 2010); this

cytokine is important for inducing mucus production from goblet

cells, stimulating the production of antibacterial proteins, pro-

tecting cells from damage, and regulating cell differentiation

(Sabat et al., 2014). A number of studies found that microbial sig-

nals modulate the amount of IL-22 produced by innate lymphoid

cells (Sanos et al., 2009; Sawa et al., 2010; Sonnenberg et al.,

2012; Stefka et al., 2014), suggesting the importance of the gut

microbiome in host defense mechanisms against infectious

and inflammatory diseases (Rutz et al., 2013). Furthermore,

Bifidobacterium longum has been found to assist in the matura-

tion of DCs in Peyer’s patches and the development of T cells in

the thymus (Dong et al., 2010), and specific microbial signals

have been deemed necessary for proper education of regulatory

T cells and invariant natural killer T (iNKT) cells (Hansen et al.,

2012; Olszak et al., 2012), which are a subset of T cells capable

of quickly inducing an abundance of cytokines that can stimulate

or suppress a variety of immune responses. Additional important

microbe-host interactions and mechanisms will be presented

later in the context of our proposed framework. Considering

how critical the various immune cells and their intricate signaling

networks are for supporting immune health, disruptions hinder-

ing their development may have lasting deleterious effects.

Other Major Influences on Microbiome Development

Diet plays a large role in the colonization of the modern infant GI

tract due to the vast compositional differences between human

milk and infant formula. Themost notable difference in themicro-

biome of breastfed versus formula fed infants is the predomi-

nance of Bifidobacteria and Lactobacilli in breastfed infants,

while formula-fed infants harbor more Enterococci and Entero-

bacteria (Palmer et al., 2007). There are also easily detected

differences in total community membership between breastfed

and formula-fed infants when looking at twin cohorts (Yatsu-

nenko et al., 2012). Human milk is able to modulate bacterial

colonization in the infant gut with distinct components not

found in formulas: the humanmilk microbiome, factors that stim-

ulate bacterial growth (prebiotics), and factors that prevent

bacterial growth (antimicrobials). The human milk microbiome

consists primarily of Proteobacteria and Firmicutes (Landau,

1974) and has of a core group of taxa found in most human

milk samples that include Staphylococcus, Streptococcus,

Serratia, Pseudomonas, Corynebacterium, Ralstonia, Propioni-

bacterium, Sphingomonas, and Bradyrhizobiaceae (Hunt et al.,

2011). The human milk microbiome also changes over time,

and is dependent on the mother’s weight (Cabrera-Rubio

et al., 2012). For example, Weissella, Leuconostoc, Staphylo-

coccus, Streptococcus, and Lactococcus are predominant in

milk immediately after giving birth, and milk from obese mothers

is less diverse than that of non-obese mothers (Cabrera-Rubio

et al., 2012). These ingested bacteria provide a constant source

of community members to help colonize the GI tract. Milk-borne

prebiotics that modulate the bacteria present in the GI tract

include human milk oligosaccharides (HMOs), which are sugars

produced solely for consumption bymicrobes. These include the
556 Cell Host & Microbe 17, May 13, 2015 ª2015 Elsevier Inc.
‘‘original’’ HMO, bifidus factor (Landau, 1974), which stimulates

Bifidobacterium bifidum and hundreds of other sugars (all

within a family of unconjugated glycans containing lactose

at the reducing end) that primarily promote the growth of Bifido-

bacterium longum subsp. infantis (Bode, 2012). Antimicrobials in

human milk that also influence the microbes within the GI tract

include secretory immunoglobulin A (SIgA), which provides anti-

gen-specific protection against microbes that the mother has

already encountered (Rogier et al., 2014), and innate immune

proteins, such as lactoferrin and lysozyme, that harbor bacteri-

cidal activity (Arnold et al., 1980). Milk obtained from mothers

of preterm infants had highest concentrations of cytokines

and immunoglobulins immediately after giving birth, further

supporting the importance of breast milk consumption in early

life (Moles et al., 2015).

Mode of delivery has an impact on the microbiome of infants,

as the total microbiome (skin, oral mucosa, nasopharyngeal

aspirate, andmeconium) of vaginally delivered infants resembles

the maternal vaginal and intestinal microbiome, while infants

delivered by cesarean section have total microbiomes resem-

bling the maternal skin microbiome (Dominguez-Bello et al.,

2010). Specifically, the microbiomes of vaginally delivered

infants consist mostly of Lactobacillus, Prevotella, Atopobium,

or Sneathia spp, whereas the microbiome of cesarean section

delivered infants contain Staphylococcus spp (Dominguez-Bello

et al., 2010) and less Bifidobacterium (Biasucci et al., 2010).

Frameworks for Studying Pediatric Dysbiosis and
Related Disease
The mechanisms and health consequences of pediatric dysbio-

sis are complex and multifactorial and are further complicated

when also considering infant development (gut microbiome, im-

mune system, and their interactions). Using a systems approach,

we consider five interdependent frameworks for understanding

dysbiosis that focus on different aspects of the mechanisms

that lead to disease. We discuss these conceptual frameworks

in terms of their relative merits for clarity, potential for organiza-

tion, and ability to express multi-factorial disease pathways. We

restrict our hypotheses to those that assume long-term health

effects of one or more short discrete courses of antibiotics, since

that is by far the most common type of antibiotic exposure in

human children (Gevers et al., 2014). Each perspective has

strengths in its ability to generalize certain aspects of pediatric

dysbiosis. In general, we find a combination of the dysbiosis-

centric and disease-centric perspectives to be the most useful

for discussing disease mechanisms.

A Dysbiosis-Centric View

The gut microbiome is in constant flux; the community composi-

tion continuously adapts to environmental exposures and host

developmental changes (Caporaso et al., 2011; Human Micro-

biome Project Consortium, 2012). This adaptability is essential

for maintaining gut homeostasis, but drastic changes, such as

those induced by antibiotics, can potentially lead to negative

health consequences. Pediatric dysbiosis can be characterized

by these drastic changes in the microbial community, discussed

here as four distinct types. Since broad-spectrum antibiotics are

designed to eradicatemultiple bacterial taxa, the gutmicrobiome

may be impacted by (1) an unintended loss of keystone taxa

that are critical for maintaining homeostasis or proper host



A B Figure 2. Trajectories for Infant Recovery
after Antibiotic Exposure
(A) Infant gut microbiomes develop rapidly and
experience large changes during infancy before
becoming indistinguishable from adult micro-
biomes by age 2. Dysbiosis in infants can displace
(no recovery) or delay (slow recovery) development
on the normal growth trajectory.
(B) Samples were obtained from a single infant
over time (Koenig et al., 2011), and microbiome
distance (Bray-Curtis) to self at 2 years old was
plotted over time. Fecal samples collected imme-
diately after antibiotics are denoted in blue. A
smoothing spline (in light blue) reveals a noticeable
change in trajectory of development after use of
antibiotics, mirroring the deviation in trajectory
predicted in Figure 2A.
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development (e.g., immune system) or (2) an overall loss of biodi-

versity, which can have inherent health risks on its own (e.g., the

hygiene hypothesis) and can also lead to other dysbiosis types

(Figure 1). Taxa that have been eradicated from their niches leave

vacancies to be filled by (3) blooms of pathogens and patho-

bionts. Even if the infant gut microbiome can recover from these

dysbiotic states to arrive at some form of homeostasis, improper

or partial recovery can result in a (4) shift in functional capability:

for example, becoming more efficient at extracting energy

(Figure 1). These dysbiosis types sometimes overlap, further

adding to the complexity of the system and the challenge of

building a unified conceptual framework for pediatric dysbiosis

research. Viewing pediatric dysbiosis from the perspective of

different dysbiosis types is particularly important for understand-

ing how small changes to the relatively simple infant gut can

manifest as larger repercussions during adulthood. Such a dys-

biosis-type framework is crucial for understanding community

dynamics within the gut microbiome but is limited in its ability

to easily address several factors such as the age of the infant,

the overlap and transition between dysbiosis types, the many-

to-many relationship between dysbiosis types and disease phe-

notypes, and the parallel development of the immune system.

A Disease-Centric View

In the context of different aspects of host development and spe-

cific taxa affected, the previously described pediatric dysbiosis

types can give rise to a variety of health consequences. Decon-

struction of the health outcome with a top-down approach is

another framework for understanding dysbiosis. In this dis-

ease-centered framework, health outcomes are generalized by

disease class and then further characterized by specific mecha-

nisms and interactions with subsystems of the framework (host

immune system, gut microbiome, host development, etc.)

(Figure 1). For example, obesity-related pediatric dysbiosis in

the context of this framework begins with antibiotic treatment

at any time point during the first 2 years of life. Biodiversity is

depleted during treatment but rebounds after treatment ends,

inducing large changes in taxonomic composition. In the case

of obesity, these compositional changes also result in functional

changes affecting metabolism; the microbiome becomes more

efficient at extracting energy from multiple sources and hence

predisposes the host to obesity (Turnbaugh et al., 2006). Antibi-

otic exposure at a younger age exacerbates predisposition to

disease (Cox et al., 2014), and compounded disturbances may
lead to unanticipated consequences (Paine et al., 1998). Other

disease classes may include allergies and atopic diseases, auto-

immune disorders, diabetes, and infectious disease. This frame-

work encapsulatesmajor interdependencies within each disease

class while accounting for temporal factors. The main short-

coming of the disease-centric view of pediatric dysbiosis is

that it does not easily allow synthesis of common mechanisms

across diseases.

An Age-Centric View

Dysbiosis can resolve with complete recovery and minimal

impact to host health or can have drastic unintended conse-

quences depending on the stage of host development. Develop-

ment of the microbiome and the host immune system can be

categorized conveniently, although approximately, into four gen-

eral stages: (1) 0 to 6 months, (2) 6 to 12 months, (3) 12 to

24 months, and (4) 24 months and older. The infant is most

vulnerable to developing immunological defects during Stage

1, when adaptive immunity interaction with keystone taxa is

most critical (van der Velden et al., 2001; Prescott et al., 1999;

Rautava et al., 2004). By Stage 4, the gutmicrobiome establishes

a new-formed stasis as it reachesmaturity, carrying forth any ex-

isting functional shifts that could predispose the host to future

diseases. Although the vulnerabilities of each stage of develop-

ment are important considerations for understanding dysbiosis,

considering segregated stages hinders characterization of

mechanisms that span multiple stages.

A Response-Centric View

The gut microbiome transitions through several stages in

response to a course of antibiotics: pre-treatment, during treat-

ment, recovery, and long-term stasis (Figure 2A). Dysbiosis

types that emerge during treatment include loss of keystone

taxa and short-term metabolic shifts, both of which would be

compounded with multiple courses of antibiotics. Immediately

after the antibiotic course, the gut microbiome begins to recover,

but not without several potential complications. The loss of di-

versity imposed by antibiotics may allow for blooms of patho-

gens and pathobionts, the adaptive immune system may be

underdeveloped and keystone taxa may still not have recovered

(further delaying immune development), and metabolic shifts

may begin to take place. Eventually the gut microbiome reaches

a form of stasis, which may be different from its pre-treatment

stage (Figure 2). At this stage, permanent metabolic shifts may

have been established, a loss of biodiversity accompanied by
Cell Host & Microbe 17, May 13, 2015 ª2015 Elsevier Inc. 557
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Obesity

Antibiotics and Disease Ajslev et al., 2011; Bailey et al., 2014; Cho et al., 2012; Cox et al., 2014; Trasande et al., 2013

Antibiotics and Microbiome Ajslev et al., 2011; Cho et al., 2012; Cox et al., 2014

Microbiome and Disease Ajslev et al., 2011; Cho et al., 2012; Cox et al., 2014; Ley et al., 2006; Ridaura et al., 2013; Turnbaugh et al., 2009

Cell Host & Microbe

Perspective
a bloom of pathobionts may persist, and the host may be predis-

posed to an increased risk of infectious disease. Although the

dynamics of the community structure in response to antibiotics

are useful for identifying short-term vulnerabilities, mechanisms

of dysbiosis typically start during one stage (e.g., treatment

stage) and end in another (e.g., recovery stage), making this

framework difficult and confusing to work with.

A Recovery-Centric View

Although adult gut microbiomes experience day-to-day

changes, they are relatively stable when compared to infant gut

microbiomes, which are characterized by large swings in taxo-

nomic composition, especially throughout the first year of life.

Regardless of the seemingly random shifts, there exists a clear

trajectory of healthy development in the infant gut microbiome

when assessing biodiversity and relative abundances of specific

taxa (Figure 2). This framework defines dysbiosis in terms of how

the microbiome recovers back to this trajectory: fast recovery,

slow recovery, or incomplete recovery (Figure 2A). During fast re-

covery, there may be a short-term loss of diversity but keystone

taxa are preserved and the gut microbiome quickly rebounds

back to normal with little impact to the host.With a slow recovery,

there may be loss of keystone taxa during a critical time for inter-

action with the immune system, therefore causing a delay in im-

mune development. Biodiversity may be low and it may take

some time before keystone taxa can reestablish and interact

with the immunesystembefore gettingbackon thenormal trajec-

tory. The host is most vulnerable to infectious disease during this

prolonged state of recovery, with both an immature immune sys-

tem and a low-diversity microbiome. Despite eventually recov-

ering and reestablishing a healthy gut microbiome, the adaptive

immune system may have developed antibodies against com-

mensals during the long recovery period, predisposing the host

to autoimmune diseases. During an incomplete recovery, the

compositional changes are so drastic that the gut microbiome

reaches a completely new form of stasis, placing it on a trajectory
558 Cell Host & Microbe 17, May 13, 2015 ª2015 Elsevier Inc.
completely different than expected (Figure 2A). These changes

are accompanied by functional and metabolic shifts in the gut

microbiome and come with disease risks of their own. The types

of recovery in this framework are notmutually exclusive, since it is

possible that either a fast or slow recovery rate may lead to an

incomplete recovery. This framework also does not address

how a recovery type may be dependent on a specific develop-

ment stage, as considered by the age-centric view.

Current Evidence for Pediatric Dysbiosis-Associated
Disease Mechanisms
In considering several alternative lenses through which to

discuss and organize pediatric dysbiosis, we have decided to

use a combination of the dysbiosis-centric and disease-centric

perspectives for summarizing and synthesizing existing knowl-

edge about potential disease mechanisms (Table 1). This

combined framework allows us to map multiple causes to the

same disease while keeping track of different developmental

and treatment stages that underlie the various known or pro-

posed mechanisms. Although the causal pathway between

dysbiosis and disease can take many forms, we present four

important disease classes in major contributing dysbiosis types.

Obesity

Evidence for antibiotics-induced obesity is primarily character-

ized by shifts in functional capability, or more specifically,

long-lasting metabolic shifts that result from incomplete recov-

ery back to the normal trajectory. Recent work found that mice

given sub-therapeutic levels of antibiotics after weaning ex-

hibited increased adiposity, large taxonomic changes in their

gut microbiomes, and increased levels of short-chain fatty acids

(SFCAs) as well as counts of bacterial genes involved in SFCA

metabolism (Cho et al., 2012). These mice also had lower caloric

output in their fecal pellets despite dietary intake similar to

controls, suggesting their gut microbiota developed the ability

to extract increased energy from indigestible components
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(Cho et al., 2012). Furthermore, low-dose antibiotics started

even earlier in life (prior to weaning) resulted in mice showing a

more pronounced increase of adiposity, and induced adipogen-

esis synergistically with a high-fat diet; fecal transplantation into

germ-free mice lead to increased fat mass relative to transplan-

tation from mice without antibiotics, implicating the gut micro-

biome in a causal role on the pathway to obesity (Cox et al.,

2014). Some epidemiological studies further substantiate the

long-lasting effects of early exposures, finding that antibiotic ex-

posures among infants younger than 6 months are significantly

associated with increased BMI later on in life, although in general

these findings are somewhat mixed and warrant follow-up in a

prospective study (Ajslev et al., 2011; Bailey et al., 2014;

Trasande et al., 2013). The 0–6 month window is a time of rapid

host and microbiome development and therefore also likely rep-

resents a period when the microbiome may be most susceptible

to adopting long-term changes. Additional studies, especially

with human subjects, are necessary to understand how antibi-

otic exposures during various developmental windows can alter

the gut microbiome and, in turn, host metabolism.

Allergy and Atopic Disorders

A considerable number of epidemiological studies link early anti-

biotic exposures, especially multiple courses, to atopic diseases

later in life (Droste et al., 2000; Johnson et al., 2005; McKeever

et al., 2002; Ong et al., 2014). As mentioned previously, normal

development of the immune system is dependent on key mem-

bers of the gut microbiome for the development of regulatory

components of the immune system as well as maintaining ho-

meostasis at the gut epithelium. Allergic and atopic disorders

are primarily caused by impaired components of the adaptive im-

mune system that rely largely on the gut microbiome (Fujimura

and Lynch 2015): for example, B cell maturity (Lundell et al.,

2014) and regulatory T cell differentiation and expansion (Atara-

shi et al., 2013). Distinct compositions of infant gut microbiomes

have been associated with the development of atopic diseases

later in life (Abrahamsson et al., 2012; Atarashi et al., 2013;

Bisgaard et al., 2011; Björkstén et al., 2001), and therefore it

is conceivable that early exposure to antibiotics, especially

broad-spectrum antibiotics, could be responsible for shaping

the gutmicrobiomewith predisposition toward allergy and atopic

diseases. We hypothesize that two dysbiosis types may be

responsible for allergy and atopic diseases: loss of keystone

taxa and blooms of pathogens and pathobionts. Evidence for

loss of keystone taxa has been established in mouse studies,

where antibiotic exposure led to changes in the gut microbiome,

which eventually impacted the immune system. Reductions in

regulatory T cell counts (Russell et al., 2012) and increases in

serum IgE concentrations and basophil-associated TH2 cell re-

sponses (Hill et al., 2012) were observedwith onset of the allergic

disease phenotype. These observations agree with previous

studies reporting that an overabundance of IgE and the cytokine

IL-4, produced by TH2 cells, are associated with allergies (Haas

et al., 1999). Another study found that antibiotics given to

neonatal mice reduced the abundance of Clostridia and as a

result induced food allergies; Clostridia colonization is important

for stimulating IL-22 production to prevent food antigens from

crossing the gut epithelium (Stefka et al., 2014). Microbial taxa

considered important for immune development may differ from

onedevelopmental stage to the next, thereforewarranting further
investigation into the importance of timing of antibiotic exposure

in atopic disease. Although some antibiotic exposures may only

create short-term dysbiosis and eventually allow themicrobiome

to recover, if the period of dysbiosis coincides with critical devel-

opmental time points, there is potential for long-term impact on

immune health. Several studies have indicated the first 6 months

of life as the most critical for immune development (van der Vel-

den et al., 2001; Prescott et al., 1999; Rautava et al., 2004), sug-

gesting the importance of host-microbiome interactions during

this time. Germ-free mice have been shown to develop immune

defenses against allergic asthma if colonized as neonates, but

not if colonized in adulthood (Olszak et al., 2012). Similarly, Hel-

icobacter pylori colonization in neonatalmice stomachs provided

increased protection against asthma, compared to adult coloni-

zation (Arnold et al., 2011). Furthermore, Russell et al. (2012)

induced asthma in mice with early antibiotic exposure but failed

to reproduce the same phenotype with antibiotic exposure in

adultmice. These studies suggest that antibiotic exposure during

this critical window of development may have the most pro-

nounced and long-lasting consequences. In addition to the loss

of keystone taxa, antibiotic exposure commonly results in an im-

mediate reduction of biodiversity that may allow for unusual

bloomsof raremembers of the gutmicrobiome. In a recent study,

antibiotic usage in infancy selected for ‘‘illness-associated’’ bac-

teria andwas linked to asthmadevelopment later in life (Teo et al.,

2015). Blooms of certain strains of Clostridia, despite the impor-

tance of this class of bacteria in immune development, may

actually contribute to atopic disease (Penders et al., 2013). Addi-

tionally, severe dysbiosis in a developing neonatal gut may allow

for bacterial translocation of commensals and hence the devel-

opment of systemic antibodies against these otherwise innoc-

uous microbes. As seen in Crohn’s disease (Adams et al.,

2008), it is highly plausible that inappropriate immune responses

against commensals could also lead to hypersensitivity to com-

mon antigens, eventually leading to allergy and atopic diseases.

Autoimmune Diseases

Although autoimmune diseases such as type 1 diabetes, rheu-

matoid arthritis, and multiple sclerosis have a large genetic

component, the gut microbiome has recently been found to be

a potential major mediator of these diseases (Cani et al., 2008;

Giongo et al., 2011; Lee and Mazmanian, 2010; Sellitto et al.,

2012; Wen et al., 2008). Regulation of autoimmune responses

by the gut microbiome is complex and usually involves direct

modulation of adaptive and innate immunity but can also occur

indirectly via hormones and parental experiences (Yurkovetskiy

et al., 2015). Interestingly, germ-free mice are incapable of

developing rheumatoid arthritis and multiple sclerosis (Lee and

Mazmanian, 2010; Wu et al., 2010). In support of the hygiene

hypothesis in autoimmune disease, one study found that the

incidence of diabetes in genetically predisposed non-obese dia-

betic (NOD) mice doubled when mice were raised in conven-

tional, compared to pathogen-free, breeding environments

(Bach, 2002). This suggests that antibiotics could exacerbate

the onset of diabetes. Recent work found that the number of

courses of antibiotics administered during childhood is associ-

ated with risk of juvenile rheumatoid arthritis (Horton et al.,

2014) and the risk of inflammatory bowel disease (Hviid et al.,

2011). There is also evidence that antibiotics are associated

with celiac disease (Mårild et al., 2013). Studies examining the
Cell Host & Microbe 17, May 13, 2015 ª2015 Elsevier Inc. 559



Figure 3. Percent Decrease in Gut
Microbiome Biodiversity across Studies
with Different Antibiotic Exposures
All fecal samples were collected 1 week
after antibiotic course was completed, except
where noted by subscripts. The Dethlefsen and
Relman (2011) study included three subjects
(A, B, and C) who received two courses 6 months
apart. DSample taken during antibiotic treatment;
4sample taken 4 weeks after antibiotic completion;
8sample taken 8 weeks after antibiotic completion
(Dethlefsen et al., 2008; Fouhy et al., 2012;
Robinson and Young, 2010; Russell et al., 2012;
Tanaka et al., 2009).
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effects of antibiotic exposure on type 1 diabetes have yielded

inconsistent results: one study found that antibiotics given to

NOD mice during pregnancy modulated type 1 diabetes devel-

opment in offspring (Tormo-Badia et al., 2014), but other studies

found antibiotics to be protective (Brugman et al., 2006; Cani

et al., 2008). There is currently limited evidence linking antibiotic

exposures to autoimmune disorders, but we hypothesize that

the underlying mechanisms are driven by loss of keystone taxa

and blooms of pathogens and pathobionts, similar to those of

allergy and atopic disorders due to the critical role of the immune

system in these diseases.

Infectious Diseases

Antibiotics are used to eradicate one or more bacterial taxa;

therefore, a temporary reduction in biodiversity is expected.

Current studies report a large range of percent losses of biodi-

versity after antibiotic exposure (Figure 3), suggesting that

some subjects may take longer to recover to baseline than

others (Figure 2). The recovery period represents a vulnerable

time for the host, since not all members of the microbial commu-

nity are present to suppress blooms of (potential) pathogens and

pathobionts, and hence prevent infection. A number of studies

support this theory, showing an increased susceptibility to infec-

tion after antibiotic exposure (Croswell et al., 2009; Deshmukh

et al., 2014; Lawley et al., 2008; Sekirov et al., 2008), with a num-

ber of studies highlighting the proliferation of antibiotic-resistant

strains (Ayres et al., 2012; Brandl et al., 2008; Buffie et al., 2012;

Donskey et al., 2000).Clostridium difficile infection in adults is an

archetypical example of how loss of biodiversity enables the

bloom of a pathogen in the gut. Necrotizing enterocolitis in

pre-term infants has also been linked to antibiotic use prior to

onset of disease (Alexander et al., 2011; Cotten et al., 2009),

and the gut microbiomes of children about to succumb to necro-

tizing enterocolitis exhibit decreased biodiversity and blooms of

Gammaproteobacteria (Mai et al., 2011; Wang et al., 2009).

Although pre-term infants have a distinct set of health risks,

this mode of infection can be extended to other disease agents

in full-term infants as well (Figure 2B). This need for ecological

checks and balances in the gut microbial community extends
560 Cell Host & Microbe 17, May 13, 2015 ª2015 Elsevier Inc.
beyond its bacterial members; antibi-

otic-induced dysbiosis has been shown

to impair innate antiviral immunity against

the influenza virus (Abt et al., 2012) as well

as enable blooms of opportunistic fungi,

such as Candida albicans (Noverr et al.,

2004). Longer-duration antibiotic therapy
appears to be correlated with length of recovery period (Fouhy

et al., 2012), which also increases the risk of infection (Alexander

et al., 2011). Identifying when amicrobiome is fully recovered will

be challenging given the inter-individual deviations of the adult

gut microbiome, and will be even more difficult with the highly

variable, developing infant gut microbiome. Lawley et al. (2008)

found that mice exposed to antibiotics still exhibited increased

colonization of Salmonella serovar Typhimurium despite recov-

ery of bacterial counts, suggesting that not only is microbiome

recovery challenging to define, but also that current methods

for measuring biodiversity may be insufficient for assessing

infection risk. Although previous studies have focused on

short-term risks for infection, it also is plausible that antibiotic

exposure could lead to an incomplete, yet stable and permanent,

recovery of the microbiome (Dethlefsen et al., 2008), potentially

predisposing the recipient to infectious disease later in life.

Future Directions
The framework presented here links together the existing epide-

miological and mechanistic studies on antibiotics and various

gut-mediated disease outcomes. Large, integrated studies

designed to focus on short- and long-term impact of antibiotics,

both in terms of microbiome composition and disease risk, with

careful consideration of the factors presented here, will be

critical as we move toward an increased understanding of

related disease etiologies. Such studies will enable important

applications, such as the development of diagnostic tools to

discover complex microbial biomarkers for dysbiosis risk. To

demonstrate the potential importance, we used a random forest

machine learning model trained on gut microbiome data from a

cohort of healthy American infants of varying ages (Knights

et al., 2011; Yatsunenko et al., 2012). Given the gut microbiome

of a healthy infant, we were able to use our model to accurately

predict the infant’s age, what we term the predictive microbiome

maturity index (MMI), within 1.3 months (SE) (Figure 4). The MMI

has clinical importance as a diagnostics tool: the predictive MMI

of a dysbiotic infant gut microbiome is likely very different from

the infant’s true age. Subramanian et al. (2014) used a similar



Figure 4. Predicted Microbiome Maturity Index
The predictive microbiome maturity index (MMI) for a given child is compared
to the true age of that child. The MMI was predicting using random forests
regression algorithm trained on themicrobiome compositions and true ages of
all children except for one being predicted. True age was predicted to within ±
1.3 months (SD of the predicted error), demonstrating the feasibility of
modeling the maturation of the gut microbiota as a predictable process across
individuals. Microbiome samples were obtained from children living in the US
(Yatsunenko et al., 2012).
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predictive model and found that children with severe acute

malnutrition had gut microbiomes that were significantly imma-

ture compared to healthy children. There is enormous potential

for the microbiome field to revolutionize diagnostics and thera-

peutics, yet published human infant studies have not been de-

signed to infer causality. Establishment of a large and diverse

baseline cohort to define healthy development of the infant

microbiome in presence and absence of perturbation by

caesarian delivery, breast-feeding alternatives, and antibiotic

usage is essential to refine our understanding of ‘‘normal devel-

opment’’ so that pediatric dysbiosis can be identified robustly.

Additionally, longitudinal and cross-sectional studies assessing

the short-term, mechanistic, and longer-term health impact

of antibiotics will be necessary to advance the diagnosis, inter-

pretation, and treatment of pediatric dysbiosis and to provide

evidence-based recommendations regarding safe practices for

antibiotic usage in infants. In conclusion, the primary goal

of continued research in pediatric dysbiosis will be to gain a

mechanistic understanding how usage of antibiotics in children

may disrupt normal development of the gut microbiota, and

at times consequently the immune system, potentially leading

to increased risk of diseases like obesity, diabetes, allergies,

asthma, and inflammatory bowel disease.
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Bäckhed, F., Roswall, J., Peng, Y., Feng, Q., Jia, H., Kovatcheva-Datchary, P.,
Li, Y., Xia, Y., Xie, H., Zhong, H., et al. (2015). Dynamics and Stabilization of
the Human Gut Microbiome during the First Year of Life. Cell Host Microbe
17, this issue, 690–703.

Bailey, L.C., Forrest, C.B., Zhang, P., Richards, T.M., Livshits, A., and
DeRusso, P.A. (2014). Association of antibiotics in infancy with early childhood
obesity. JAMA Pediatr. 168, 1063–1069.

Bezirtzoglou, E. (1997). The intestinal microflora during the first weeks of life.
Anaerobe 3, 173–177.

Biasucci, G., Rubini, M., Riboni, S., Morelli, L., Bessi, E., and Retetangos, C.
(2010). Mode of delivery affects the bacterial community in the newborn gut.
Early Hum. Dev. 86, 13–15.

Biedermann, L., and Rogler, G. (2015). The intestinal microbiota: its role in
health and disease. Eur. J. Pediatr. 174, 151–167.

Bisgaard, H., Li, N., Bonnelykke, K., Chawes, B.L.K., Skov, T., Paludan-Müller,
G., Stokholm, J., Smith, B., and Krogfelt, K.A. (2011). Reduced diversity of the
intestinal microbiota during infancy is associated with increased risk of allergic
disease at school age. J. Allergy Clin. Immunol. 128, 646–652.
Cell Host & Microbe 17, May 13, 2015 ª2015 Elsevier Inc. 561

http://dx.doi.org/10.1126/scitranslmed.3008599
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref2
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref2
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref2
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref3
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref3
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref3
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref3
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref4
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref4
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref4
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref4
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref5
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref5
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref6
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref6
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref6
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref6
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref7
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref7
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref7
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref8
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref8
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref8
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref9
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref9
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref9
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref9
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref10
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref10
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref10
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref10
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref11
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref11
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref11
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref12
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref12
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref12
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref12
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref13
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref13
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref14
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref14
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref15
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref15
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref15
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref16
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref16
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref17
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref17
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref17
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref17
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref18
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref18
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref18
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref19
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref19
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref20
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref20
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref20
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref21
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref21
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref22
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref22
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref22
http://refhub.elsevier.com/S1931-3128(15)00164-X/sref22


Cell Host & Microbe

Perspective
Björkstén, B., Sepp, E., Julge, K., Voor, T., and Mikelsaar, M. (2001). Allergy
development and the intestinal microflora during the first year of life.
J. Allergy Clin. Immunol. 108, 516–520.

Bode, L. (2012). Human milk oligosaccharides: every baby needs a sugar
mama. Glycobiology 22, 1147–1162.

Brandl, K., Plitas, G., Mihu, C.N., Ubeda, C., Jia, T., Fleisher, M., Schnabl, B.,
DeMatteo, R.P., and Pamer, E.G. (2008). Vancomycin-resistant enterococci
exploit antibiotic-induced innate immune deficits. Nature 455, 804–807.

Brugman, S., Klatter, F.A., Visser, J.T.J., Wildeboer-Veloo, A.C.M., Harmsen,
H.J.M., Rozing, J., and Bos, N.A. (2006). Antibiotic treatment partially protects
against type 1 diabetes in the Bio-Breeding diabetes-prone rat. Is the gut flora
involved in the development of type 1 diabetes? Diabetologia 49, 2105–2108.

Buffie, C.G., Jarchum, I., Equinda, M., Lipuma, L., Gobourne, A., Viale, A.,
Ubeda, C., Xavier, J., and Pamer, E.G. (2012). Profound alterations of intestinal
microbiota following a single dose of clindamycin results in sustained suscep-
tibility to Clostridium difficile-induced colitis. Infect. Immun. 80, 62–73.

Cabrera-Rubio, R., Collado, M.C., Laitinen, K., Salminen, S., Isolauri, E., and
Mira, A. (2012). The human milk microbiome changes over lactation and
is shaped by maternal weight and mode of delivery. Am. J. Clin. Nutr. 96,
544–551.

Cani, P.D., Bibiloni, R., Knauf, C., Waget, A., Neyrinck, A.M., Delzenne, N.M.,
and Burcelin, R. (2008). Changes in gut microbiota control metabolic endotox-
emia-induced inflammation in high-fat diet-induced obesity and diabetes in
mice. Diabetes 57, 1470–1481.

Caporaso, J.G., Lauber, C.L., Costello, E.K., Berg-Lyons, D., Gonzalez, A.,
Stombaugh, J., Knights, D., Gajer, P., Ravel, J., Fierer, N., et al. (2011). Moving
pictures of the human microbiome. Genome Biol. 12, R50.

Chai, G., Governale, L., McMahon, A.W., Trinidad, J.P., Staffa, J., andMurphy,
D. (2012). Trends of outpatient prescription drug utilization in US children,
2002-2010. Pediatrics 130, 23–31.

Cherrier, M., and Eberl, G. (2012). The development of LTi cells. Curr. Opin.
Immunol. 24, 178–183.
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